Exercise 5

Show that the function $f(x)=-2(x-1)^{2}+3$ is not one-to-one.

Solution

To show that the function is not one-to-one, try to find its inverse. Switch x with y in the given formula.

$$
x=-2(y-1)^{2}+3
$$

Solve for y.

$$
\begin{gathered}
x-3=-2(y-1)^{2} \\
\frac{x-3}{-2}=(y-1)^{2} \\
\sqrt{\frac{x-3}{-2}}=\sqrt{(y-1)^{2}} \\
\sqrt{\frac{x-3}{-2}}=|y-1|
\end{gathered}
$$

Remove the absolute value sign by placing \pm on the left side.

$$
\pm \sqrt{\frac{x-3}{-2}}=y-1
$$

Add 1 to both sides.

$$
\pm \sqrt{\frac{x-3}{-2}}+1=y
$$

There are two possible formulas for the inverse function, $\sqrt{\frac{x-3}{-2}}+1$ and $-\sqrt{\frac{x-3}{-2}}+1$. Therefore, $f(x)$ is not one-to-one.

